If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+26x-156=0
a = 4; b = 26; c = -156;
Δ = b2-4ac
Δ = 262-4·4·(-156)
Δ = 3172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3172}=\sqrt{4*793}=\sqrt{4}*\sqrt{793}=2\sqrt{793}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{793}}{2*4}=\frac{-26-2\sqrt{793}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{793}}{2*4}=\frac{-26+2\sqrt{793}}{8} $
| 4x^2+26x+156=0 | | x+6=9×3 | | (10x-45)+(6x-1)=180 | | 99+(11x)=63x+108 | | 6x=108,x-18 | | 7/9*4/5=x | | 1.2n-6=14 | | (x-1)^2=-9 | | −36+4y=-12 | | (x-3)+(12x-25)=180 | | -4(4n+4)=48 | | (6x+6)/2=0 | | 4(4-3x)=64 | | 2x+4/2x+6=19/112 | | c=50+0.5Y | | Y=x*2+10x+16 | | 7(x-5)+3x=5 | | 15g-11g=20 | | −80=-10u-10 | | x=7+1/4 | | x+15=4.5x/30 | | 20x+35=180 | | X+1÷x+2+x+3÷x+4=19÷12 | | 5x-13=-93 | | 7x-12=160 | | 2x+7x-12=160 | | X*2+10x+9=0 | | x+7x-12=160 | | 4x*2-10x+1=0 | | X+1/x+2+x+3/x+4=19/12 | | 3u+7(u+4)=38 | | -13=-5w+8(w-5) |